Invariant density, Lapunov exponent, and almost sure stability of Markovian-regime-switching linear systems

نویسندگان

  • Qi He
  • Gang George Yin
چکیده

This paper is concerned with stability of a class of randomly switched systems of ordinary differential equations. The system under consideration can be viewed as a two-component process (X(t), α(t)), where the system is linear in X(t) and α(t) is a continuous-time Markov chain with a finite state space. Conditions for almost surely exponential stability and instability are obtained. The conditions are based on the Lyapunov exponent, which in turn, depends on the associate invariant density. Concentrating on the case that the continuous component is two dimensional, using transformation techniques, differential equations satisfied by the invariant density associated with the Lyapunov exponent are derived. Conditions for existence and uniqueness of solutions are derived. Then numerical solutions are developed to solve the associated differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Stability of numerical methods for jump diffusions and Markovian switching jump diffusions

This work is devoted to stability analysis of numerical solutions for jump diffusions and jump diffusions with Markovian switching. Different from the existing treatment of Euler-Maurayama methods for solutions of stochastic differential equations, we use techniques from stochastic approximation. We analyze the almost sure exponential stability and exponential pstability. Then Markovian regime-...

متن کامل

Lie Algebra Approach in the Study of the Stability of Stochastic Linear Hybrid Systems

The problem of the stability of a class of stochastic linear hybrid systems with a special structure of matrices and a multiplicative excitation is considered. Sufficient conditions of the exponential p-th mean stability and the almost sure stability for a class of stochastic linear hybrid systems with the Markovian switching are derived. Also, sufficient conditions of the exponential mean-squa...

متن کامل

Almost Sure and pth-Moment Stability and Stabilization of Regime-Switching Jump Diffusion Systems

This work focuses on regime-switching jump diffusions, which include three classes of random processes, Brownian motions, Poisson processes, and Markov chains. First, a scalar linear system is treated as a benchmark model. Then stabilization of systems with one-sided linear growth is considered. Next, nonlinear systems that have a finite explosion time are treated, in which regularization (expl...

متن کامل

Almost sure H∞ sliding mode control for nonlinear stochastic systems with Markovian switching and time-delays

This paper investigates the almost sure H∞ sliding mode control (SMC) problem for nonlinear stochastic systems with Markovian switching and time-delays. An integral sliding surface is first constructed for the addressed system. Then, by employing the stopping time method combined with martingale inequalities, sufficient conditions are established to ensure the almost surely exponential stabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Systems Science & Complexity

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2011